Em mecânica quântica, a equação de Klein–Gordon é a versão relativista da equação de Schrödinger.[1] Algumas vezes chamada de Klein–Fock–Gordon ou Klein–Gordon–Fock.
É a equação de movimento de um campo escalar ou pseudo-escalar quântico. Este campo descreve partículas sem spin. Esta equação não corresponde a uma densidade de probabilidade definida positiva e além disso é de segunda ordem na derivada temporal, o que impede uma interpretação física simples. Ela descreve uma partícula pontual que se propaga nos dois sentidos temporais e a sua interpretação é possível recorrendo à teoria de antipartículas desenvolvida por Feynman e Stueckelberg. Todas soluções da equação de Dirac são soluções da equação de Klein-Gordon, mas o inverso é falso.
A equação
A equação de Klein–Gordon é derivada aplicando o processo de quantização a relação de energia relativística para uma partícula livre:
/ **= ** = [ ] ω , , .=
fazendo as identificações padrão e ,/ **= ** = [ ] ω , , .=
em unidades SI se obtém a forma:
- / **= ** = [ ] ω , , .=
que também é frequentemente reescrita de forma mais compacta utilizando o operador d'alembertiano / **= ** = [ ] ω , , .=
e em unidades naturais:
/ **= ** = [ ] ω , , .=
No contexto de Teoria Quântica de Campos, a equação também pode ser derivada aplicando a equação de Euler-Lagrange para campos:
/ **= ** = [ ] ω , , .=
em que a convenção de soma de Einstein está em uso, à seguinte densidade de lagrangiana:
. / **= ** = [ ] ω , , .=
Neste contexto, após o processo de segunda quantização, se diz que este campo de Klein-Gordon descreve bósons sem carga, sem spin de massa m.
Versão Complexa
Há uma versão complexa do campo de Klein-Gordon podendo ser derivada da densidade de Lagrangiana:
/ **= ** = [ ] ω , , .=
satisfazendo:
/ **= ** = [ ] ω , , .=
A este campo estão associados bósons com carga, sem spin de massa m.[2]
História
A equação foi nomeada em honra dos físicos Oskar Klein e Walter Gordon, que a propuseram no ano de 1927 para descrever electrões relativistas. No entanto, foi mais tarde descoberto que os electrões são partículas com spin e corretamente descritos pela equação de Dirac. A equação de Klein Gordon descreve corretamente partículas escalares como o pião.
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ * *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
/ **= ** = [ ] ω , , .=
Comments
Post a Comment